

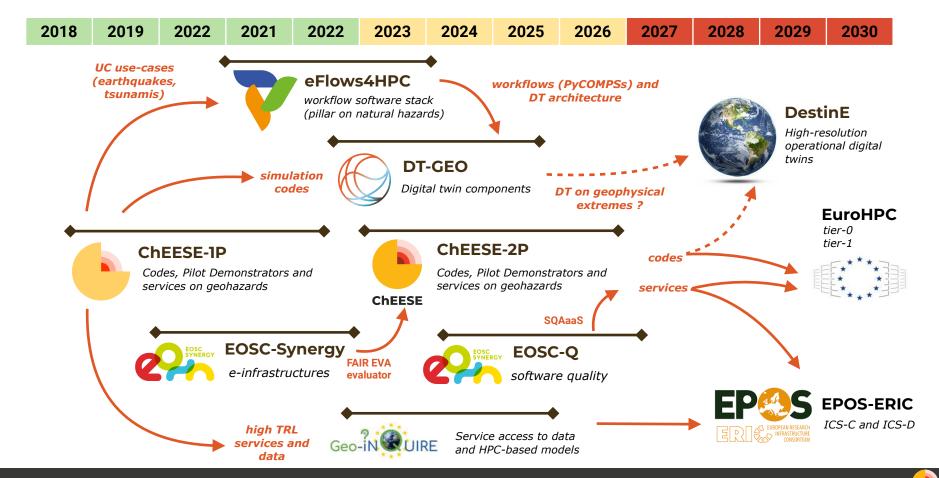
HPC (European) projects in the Solid Earth ecosystem

Arnau Folch

Geosciences Barcelona (GEO3BCN-CSIC), Barcelona, Spain

11th Galileo Conference 23-26 May 2023

Session 3: State-of-the-art in computational geosciences



Recent and current European initiatives related to HPC and SE

Project		Funding	GA No	Period	Budget	#Partners	Only for Solid Earth?
ChEESE-1P		H2020	823844	2018-2022	7.6 M€	13	Y
EOSC-Synergy	EOSC SYNERGY	H2020	857647	2019-2022	5.6 M€	19	N
eFlows4HPC		EuroHPC	955558	2021-2023	7.6 M€	16	N
DT-GEO		HE	101058129	2022-2025	15.1 M€	18	Y
Geo-INQUIRE	Geo-ÎN ÜIRE	HE	101058518	2022-2026	13.9 M€	52	Y
ChEESE-2P	ChEESE	EuroHPC	101093038	2023-2026	7.7 M€	17	Y

An ecosystem of interrelated projects with long-term (2027-2030) ambitions

The ChEESE Center of Excellence: underpinning concept

Covers 3 approaches to exascale

02

03

Capability computing

Solve problems that traditionally have been parameterized because are unaffordable with current hardware

Capacity computing

Solve ensembles of single problems affordable with current petascale-range machines but that can aggregate into an exascale workflow (e.g. data inversion, model data assimilation, uncertainty quantification, etc)

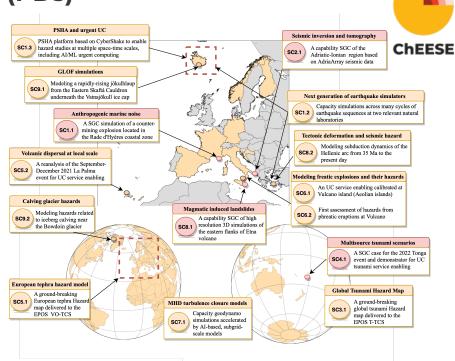
Urgent computing

Solve capability/capacity problems under strict time constrains in terms of time-to-solution (emergency situations)

ChEESE sustains on 3 pillars: codes, pilots and services

ChEESE Pillar 1: Flagship codes

Area	No	Code	Accelerated	Mini- app
	1	SeisSol	CUDA	yes
Computational	2	SPECFEM3D	CUDA, HIP	yes
Seismology	3	ExaHyPE	on-going	no
	4	Tandem	on-going	yes
MHD	5	xSHELLS	CUDA	yes
Tsunami modelling	6	HySEA	CUDA	yes
Volcanology	7	FALL3D	OpenACC	yes
voicariology	8	OpenPDAC	on-going	no
Geodynamics	9	LaMEM	on-going	no
Geodynamics	10	pTatin3D	CUDA	yes
Glacier modelling	11	Elmer/ICE	on-going no	



Code preparation activities				
Model New model physics, couplings ar forcing terms				
	Code audit(s) and related POP metrics			
	GPU porting and fine tuning			
Code	Single heterogeneous node performance			
preparation	Multi-node performance			
	Algorithmic improvements			
	Resilience and fault tolerance			
	IO performance			
co-desing	Co-design with mini-apps (EuPEX, EuPILOT)			

ChEESE Pillar 2: Pilot Demonstrators (PDs)

No	PD name	Area	Initial TRL	Target TRL
1	Extreme-scale modeling of seismic hazards CS		5	7
2	Joint seismic inversion and tomography	J	4	6
3	Global tsunami hazard and uncertainty quantification	Т	6	8-9
4	Complex multi-source tsunami modeling	1	3	5
5	Ensemble-based volcanic dispersal at multiple scales	V	5	7-8
6	Multiphase 3D volcanic explosion modeling	V	4	7
7	The Earth's dynamo model	MHD	3	5
8	Geodynamics to geohazards	GD	3	5
9	Glacial outburst floods	GL	2	4

PDs materialise in 15 Simulation Cases (SCs) to produce:

- Open datasets
- Urgent computing service enabling
- TCS-TSU and TCS-VO in EPOS

ChEESE Pillar 3: Services

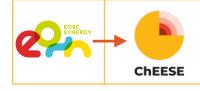
01

Urgent Computing (UC) service enabling at EuroHPC systems (emergency access mode)

Collaboration with IUB members (exercises) and EuroHPC Infrastructure Advisory Group (INFRAG) for UC service certification, deployment, and access

PD1	SC1.3	Physics-based PSHA and urgent UQ
PD4	SC4.1	Multi-source high-resolution tsunamigenic scenarios
PD5	SC5.2	Volcanic dispersal at multiple scales
PD6	SC6.1	Multiphase flow simulation of phreatic eruptions

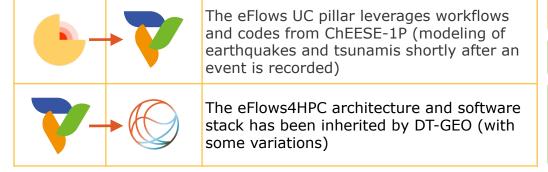
Services integrated in EPOS Tematic Core Services (TCS)


TCS-TSU and TCS-VO

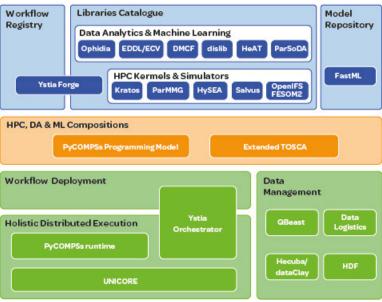
PD3	SC3.1	Global Tsunami Hazard Map
PD5	SC5.1	The European tephra hazard map

CI/CD in EuroHPC systems

Collaboration with CASTIEL-2

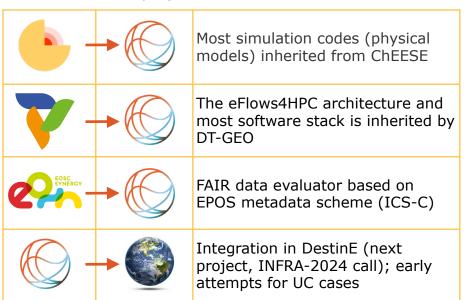


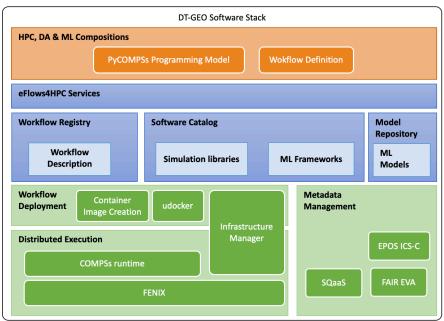
Software Quality Assurance as a Service (SQAaaS)


eFlows4HPC: enabling workflows for HPC, HPDA and ML

- Delivery of workflows software stack and added value services tailored to 3 user's communities: industrial digital twins, climate, and UC for natural hazards
- HPC Workflow as a Service (HPCWaaS) platform to facilitate the reusability of the complex workflows in federated HPC infrastructure
- Links with other projects:

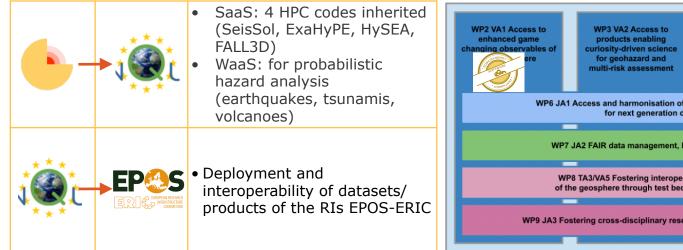
eflows4HPC software stack

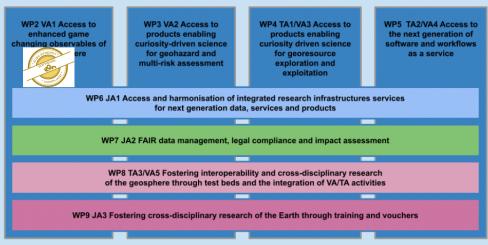



DT-GEO: a digital twin for geophysical extremes

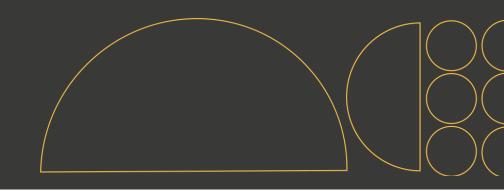
- Deploy a pre-operational prototype of Digital Twin (DT) on geophysical extremes for its future integration in the Destination Earth (DestinE) mission-like innitiative
- Implement 12 self-contained Digital Twin Components (workflows) addressing hazardous phenomena from volcanoes (4 DTCs), tsunamis (1 DTC), earthquakes (6 DTCs), and anthropogenic seismicity (1 DTC)

Links with other projects:





Geo-INQUIRE: giving access to exisitng products


- A portfolio of 150 Virtual Access (VA) and on-site Transnational Access (TA) to geosphere data, products, and services offered to the scientific community
- Provision of innovative data-management, simulation, training, and visualisation techniques at the interface with HPC facilities
- Includes VA and TA for a set of SaaS and WaaS derived from ChEESE-1P (the so-called ChEESE-CoE RI)

Summary and Conclusions

- Europe has a rich ecosystem of synergistic projects adressing HPC and Solid Earth
- Funding during the period 2018-2026 exceeds 50M€ (will likely grow)
- Tackling of codes, workflows, HPDA, AI and services; emphasis on interoperability and data/ software FAIRness
- DestinE, EPOS and EuroHPC are the main community targets for outreach and operations

Thank you!

http://cheese2.eu

 $@cheese_coe@techhub.social\\$

