
Natalia Poiata1,2, Javier Conejero3, Rosa M. Badia3 and Jean-Pierre Vilotte4 
1) National Institute for Earth Physics, Romania 

2) International Seismological Centre, UK 
3) Department of Computer Sciences, Barcelona Supercomputing Center (BSC-CNS), Spain 

4) Université Paris Cité, Institut de Physique du Globe de Paris, France. 

May 24, 2023

BackTrackBB workflow for seismic source detection and location with 
PyCOMPSs parallel computational framework



�2

1. Introduction: Big Data in Seismology
Advances in Seismological Observations: increasing density of seismic networks

Global broad-band seismic stations 

1990

2020

Regional and local deployments 

Swath-D project 

US-Array 

deployment 

Adria-Array 


Hi-Net


from Arrowsmith et al. (2022)



�3

1. Introduction: Big Data in Seismology
Increased Volumes of Archived Seismic Data

Globally-archived seismological data Global broad-band seismic stations Global broad-band seismic stations 

1990

2020

from Arrowsmith et al. (2022)

https://ds.iris.edu/data/distribution/



�4

1. Introduction: Big Data in Seismology
Evolution on a scale of a single data-center - Romanian Seismic Network

Current state of the Romanian Seismic Network Locally-archived seismological data 

Analog seismic network of Romania - 1980 

Digital seismic network of Romania - 2022

Seismic network 
modernisation 

from Ionescu et al. (2022)



�5

1. Introduction: Methodological Advances
Transformative evolution of earthquake detection and location approaches

from Li et al (2020)

Evolution of earthquake location methods in time

Targeting wide range of seismic source types and different environments (tectonic, volcanic, anthropogenic, …) 
Applicable for continuous (real-time) monitoring of seismic activity

Rise of new data-driven methods operating on continuous seismic data



Scalable parallelisation of automatic full waveform, coherency method for seismic source detection and location 
Framework for efficient and easily reproducible analysis of continuous seismic records from distributed networks

�6

2. BackTrackBB with PyCOMPSs
Optimising earthquake detection and location for HPC resources

+

Task-based programming  
model for distributed  

computing

BackTrackBB

BackTrackBB coherency-based detection and location method PyCOMPSs framework 

BackTrackBB with PyCOMPSs 
framework for efficient and reproducible earthquake detection and location using continuous data



�7

2.1. BackTrackBB with PyCOMPSs - Backbone methods
BackTrackBB - earthquake detection and location

Automatic coherency-based detection and location 
method making use of continuous seismic data 

Efficient in detecting events from low signal-to-noise 
ratio records 

Capable to significantly improve earthquake’s catalogues 

Data streaming analysis capabilities

Schematic presentation of the method

BackTrackBB



�8

PyCOMPSs - task-based programming model for Python application

2.1. BackTrackBB with PyCOMPSs - Backbone methods

PyCOMPSs task-dependency graph example

• PyCOMPSs (BSC) task-based programming model for Python 
applications (Tejedor et al., 2017) 

• Framework facilitating development of parallel computational 
workflow in Python (for sequential codes)  

• Relies on runtime for dynamically extracting parallelism among 
tasks and executing them in distributed environments (HPC 
clusters, cloud infrastructures, …) 

• Runtime system in charge of exploiting inherent concurrency of 
the script, detecting data dependency among tasks and sending 
them to available resources 

• Transparent to user 

• Comes with performance analysis and monitoring tools



�9

2.2. BackTrackBB with PyCOMPSs - Implementation

• Python-based with C modules and Obspy use for basic signal processing 

• Embarrassingly-parallel computations 
• Parallel (CPU) capability using Python’s multiprocessing module  

• Input - configuration parameters and data (waveforms & 3D travel-time grids) 
• Output - detected and located events ASCII file(s)  & plots 

BackTrackBB code - main specifications

BackTrackBB flowchart

Parallelization of BackTrackBB with PyCOMPSs
• Determine parallelization opportunity using operation flowchart  
• (considering number of loops and iterations per loop) 

• Identify functions as candidate for PyCOMPSs tasks (decorators recognised by runtime) 

• Include PyCOMPSs task decorators into the BackTrackBB code 
• Identify required synchronisations during execution 

• Identify required developments - support for dictionaries containing future objects (included) 

• Analyse extracted parallelism and test the implementation 

Example BackTrackBB task annotation of read_grid function

synchronisation 1

synchronisation 2



�10

2.2. BackTrackBB with PyCOMPSs - Implementation
Illustration of the extracted parallelism

Task dependency graphs 

2h data

3h data

4h data

Input data scheme of BackTrackBB

Confirms good parallelism, able to produce an avalanche of independent tasks 
Efficiently uses available resources to its best

Data are analysed in 1 hour time-period 
Detection and location carried in sliding time-window   
within each 1hour time-period 
Each time-periods is split in blocks of sliding  
time-windows - more efficient implementation



�11

Test platform description
2.2. BackTrackBB with PyCOMPSs - Performance testing 

Synthetic dataset: 100 stations & 1 month data Real-case dataset: Vrancea (Romania)  
                               7 - 22 stations & 2 month data

Test datasets setup

MareNostrum IV supercomputer, Barcelona Supercomputing Center (BSC) 
3456 nodes Intel Xeon Platinum 8120 CPU’s (24 cores, 2.1Gbit/s, 32 MB cache) 
Main memory - 96 GB (216 nodes with 380 GB) 

  100 Gbit/s Intel Infiniband and 10 Gigabit Ethernet network interconnections 
Tests ran with max 37 compute nodes (1 master - N worker node configuration)

Stress-testing  
Controlled environment 
Allows multiple parameter 
testing 

Observed dataset  
Dealing with data  

quality issues 
(gaps in recorded data) 

stage 1 stage 2



Performance with internal parallelism

2.2. BackTrackBB with PyCOMPSs - Performance testing results

�12

Performance and parallelisation behaviour
Scalability analysis - performance for synthetic dataset

Memory performance testing
Using different : 3D model-grid discretisation schemes 

              Number of analysed stations 

A memory intensive problem - reaches limitations of setup size 
(e.g., number of stations and analysed region) 
main limitation

Strong scaling testing case Weak scaling testing case

 1 day  
of data

 2 day  
of data

 3 day  
of data

 4 day  
of data

1 day of data  & 100 stations

4 day of data  & 100 stations

growing data and resources

Same dataset and increasing resources Increasing dataset and resources Scalability and internal parallelism



�13

2.3. BackTrackBB with PyCOMPSs - Performance testing results

Synthetic dataset Real-case dataset 

Main implications for the seismological data analysis detection and location problem

Demonstration of scalability and performance 
Potential to create and analyse different parameter setup 

100 station test - used as memory stress-test 
Only finalised on large memory nodes 
Provided as example test with program for deployment

Case of hazardous seismic activity in Europe 
Testing performance and elapsed times 

7.5 h for 1 month data  
& 22 stations - 50 nodes  

Low increase in event  
detection numbers -  

methodological  
adjustments  required

Data reprocessing 
is achievable 

Possibility for multiple 
parameter testing 
(e.g., velocity models, 
signal processing, …)

Catalog and automatic locations 



�14

Rapid reply and emergency analysis in crises situation
2.3. BackTrackBB with PyCOMPSs - Implications for earthquake monitoring

Example of earthquake sequence in Romania (February - March 2023)

Gorj seismic sequence according to official data 
Partial, manually revised results (work in progress) 
~ 1500 events in > 1 month

source ROMPLUS catalogue
Example of BackTrackBB analysis 

30 min of continuous data

BackTrackBB with PyCOMPSs analysis  
of 11 February - 21 March 2023 data: 
   8 stations & 9 nodes - 4.68 h 

12 stations & 9 nodes - 5.20 h 

Can perform multiple tests  
Provide information for emergency 
response actions

Intense seismic sequence in an area 
with low seismicity

Big stress on standard technique 
analysis - large processing delays

8 stations - permanent only

12 stations - including temporary

BackTrackBB with PyCOMPSs 
can be used for emergency 
monitoring



�15

Big Data seismology require efficient methods to analyse and extract information  
from the datasets 

Combining new methods for earthquakes detection and location with efficient use of  
available computational resources is required 

BackTrackBB with PyCOMPSs - a task-based parallelisation of earthquake detection and location  
for efficient and reproducible analysis of continuous seismic data 

Provides perfect scalability confirmed by extensive testing  
Current issue: memory-intensive problem    

BackTrackBB with PyCOMPSs - can provide important input for crises situation if/when  
necessary computational (on demand) resources are available 

Outstanding problem represent data access and deployment -> building connection between  
the seismological data centres and computational facilities 

BackTrackBB with PyCOMPSs code availability - GitHub & WorkflowHub repositories

3. Conclusions 

from Arrowsmith et al. (2022)


