Wednesday, May 24, 2023

GC11 – Solid Earth

Preparing Seismic Applications for Exascale using Scientific Workflows

Scott Callaghan, Philip J. Maechling, Karan Vahi, Ewa Deelman, Fabio Silva, Kevin R. Milner, Kim B. Olsen, Robert W. Graves, Thomas H. Jordan, and Yehuda Ben-Zion

Outline

- What is a workflow?
- What are key workflow concepts?
- How do workflows benefit real-world seismic applications?
- What are the community challenges as we look ahead to exascale?
- Before we get started
 - Who here uses a released workflow tool?
 - Who here has written their own workflow tool?

? xascale?

What is a workflow?

- Series of computational tasks with dependencies between them
 - Short, long, serial, parallel, ...
- Capture executables, parameters, input, output
- Workflow process and data are usually independent
 - Can rerun same workflow on different data
 - System-independent: can run same workflow on different systems
- Workflow logic independent from scientific codes

Workflow Shared Concepts

- Many workflow tools, but common concepts between them
- Representation of workflow tasks and their data
 - Can be specified through API, annotations, GUI
 - Explicit or implicit data roles
- Workflow prepared to run on certain hardware
- Schedule and run the workflow, honoring dependencies
 - May include remote job submission and data transfer
 - Some support interactivity and notebooks
- User monitors workflow execution
 - May include error handling and retry provisions

3

Why Use Scientific Workflows?

- Automated management of task execution
- Support for distributed execution
- Data management
- Metadata management
- Error recovery
- Portable description of pipeline

NAS report

- US National Academy of Sciences commissioned a report on automated research workflows (ARWs) in 2020
- "The common goal of researchers implementing ARWs is to acceleratesscientifikiknowdgelge generationt potielly bly byderd ef snofgmiag det ude leveltile a chievinagegne atero condrol and odprivality bility in the iscientific process."
- "The tools and techniques being developed under the large umbrella of ARWs promise to transform the centuries-old serial method of research investigation... Simultaneously, ARWs provide a way to satisfy pressing demands across fields to increase interoperability, reproducibility, replicability, and trustworthiness by **betttertracking greatults**, recondingdataesestalbishingprevenae.cameatinge mores contristent at a contribution of the discrete discr researchers an provided the asket es."

Closing the Knowledge Discovery Loop

Automated Research Accelerated Discovery

Consensus Study Report

Real-World Scientific Workflows

5/18/2023

- Southern California Earthquake Center's CyberShake platform as example of scientific workflows in action
- 3D physics-based probabilistic seismic hazard analysis platform
- Simulation-based alternative to empirical ground motion models (GMMs)
- Reciprocity used to reduce computational cost • 670 instead of 720,000 regional wave propagation sims
- Approach used in California and SW Iceland
- Continue to improve models and codes

5/18/2023

Southern California Earthquake Center

CyberShake Computational Requirements

CyberShake Stage	Number of Tasks	Node-Hours	Output Data
Velocity mesh creation (parallel)	1	10 CPU	300 GB
Wave propagation (parallel)	2	80 GPU	1500 GB
Low-frequency seismogram synthesis (parallel)	1	1000 CPU	38 GB
High-frequency seismogram synthesis (serial)	77,000	1000 CPU	187 GB
Total, 1 site (including small jobs)	77,020	2090	2025 GB
Total, full region	25.8 million	700,000	680 TB

- Large computational and data requirements
- Mix of large parallel CPU and GPU jobs with HTC
- High degree of automation required to support continuous execution

CyberShake Workflow Framework

- Pegasus-WMS
 - Use API to create description of workflow
 - Tasks with dependencies
 - Input/output files
 - Plans workflow for execution on specified systems
 - Adds jobs to manage data
 - Wraps executables to track runtime metadata
- HTCondor
 - Manages real-time execution of jobs
 - Submits jobs to remote systems, checks on success
 - Monitors dependencies
 - Checkpoints workflow
- Globus used to transfer data

Schematic of CyberShake low-frequency workflow

9

CyberShake Challenges: Automated Job Submission

- CyberShake studies take months to run
 - Automated job submission is a must!
- Many HPC systems require two-factor authentication
 - Manual token entry conflicts with automated job submission
- Could orchestrate workflows from cluster
 - Limited support for distributed execution
 - Restricted to center-supported workflow systems
- We preferred solutions with independent workflow submission host

Job Submission Solutions

• Pull-based: get resources first, then 'pull' work onto them

5/18/2023

Southern California Earthquake Center

• Push-based: jobs sent when ready • Daemon required to set up connection

Remote compute resource

CyberShake Challenges: Job Execution

- Workflows include heterogeneous jobs
 - Serial, parallel, CPU, GPU
- Targeted OLCF *Summit* (#5)
 - *Summit* prioritizes large jobs
 - Want to run in bins 1 or 2
 - Largest tasks in the workflow are $\sim 1.5\%$ of the system
- Use pull-based approach

5/18/2023

- Create large (~1000 node) pilot jobs, then fill with tasks
- Created process to monitor task queue on workflow submission host and submit pilot jobs when enough tasks were ready

Summit Scheduling Policy ging Boost days days

Bin	Min Nodes	Max Nodes	Αę
1	2765 (50%)	4608	15
2	922 (20%)	2764	10
3	92 (2%)	921	0
4	46 (1%)	91	0
5	1	45	0

CyberShake Challenges: Job Execution

- High throughput needed for small serial tasks
 - •77,000 tasks per site for broadband calculations
- Can't place jobs directly in the *Summit* queue
 - Schedulers aren't designed for this kind of load
 - Scheduler cycle is ~5 minutes
 - Policy limits number of jobs in queue
- Bundle high throughput jobs using Pegasus-mpi-cluster (PMC)
 - MPI wrapper around tasks
 - Uses manager-worker paradigm to execute tasks
 - Preserves dependencies
- Push-based approach for PMC jobs

CyberShake Challenges: Data Management

- Millions of data files
 - Workflows stage files needed for executables
 - Supports running distributed workflows
 - Output data staged back to archival storage
- Data integrity
 - Automated checks to detect file errors early
 - Correct number of files, correct size, NaNs present, zero-value checks, MD5 sums
 - Included as new jobs in workflow
- Preparing output data for easy access later
 - Work in progress

14

- CyberShake study for 335 sites in Southern California
- Both low-frequency (0-1 Hz) and broadband (0-50 Hz) hazard models
 - Broadband approach validated against historic earthquakes
- Updated rupture generation process
 - Reduced slip/risetime correlation
 - Reduced shallow rupture speeds
 - Increased hypocentral density from $4.5 \rightarrow 4 \text{ km}$
- Improved near-surface 3D velocity model
 - Added Vs30-derived merged taper to create more realistic velocity profiles

Study 22.12 site map

15

Study 22.12 Statistics

- Makespan of 108 days
- Used 772,000 node-hours on OLCF Summit
 - Averaged 442 nodes
 - Max of 3382 (73% of *Summit*, ~17x MareNostrum 4, ~50% MareNostrum V)
- Workflow tools managed:
 - •28,120 tasks (11,431 remote)
 - •~2.5 PB total data

5/18/2023

• 74 TB / 19M files transferred and archived

Southern California Earthquake Center

Study 22.12 Results

Study 22.12

These hazard maps were generated using:

Ratio, new/old CyberShake

Southern California Earthquake Center

5/18/2023

Ratio, 22.12/GMMs

Future Science Directions

- Increase deterministic frequency to 2 Hz
 - Frequency-dependent attenuation
 - Small-scale velocity heterogeneities
- Include nonlinear simulations
 - Reciprocity is by definition linear
 - Identify subset of events for full nonlinear simulations
 - Apply pseudo-nonlinearity to reciprocity results
- Streamline process of integrating new codes
 - Goal is to support multiple codes for each stage
 - Supports improved quantification of uncertainty

GMM ASK2014 z-scores

Future Computational Challenges

- Workflows to support hybrid linear/nonlinear approach
 - Must bookkeep and combine site-based and event-based seismograms
- Largest systems are becoming more specialized
 - For example, not feasible to run GPU and CPU jobs on OLCF *Frontier*
 - Will require distributed workflows
- Improved data management and delivery
 - DOIs for data products
 - Continue to develop data access tool for direct data product access
- Support execution by other researchers
 - Containers?

19

Looking Ahead

- Questions for us to consider as scientific workflow simulations move to exascale systems
- How do we take best advantage of upcoming opportunities?
- Hope to encourage discussion!

Utilizing Exascale Systems

- Full-system hero runs?
- Ensembles?
- Combination?

Application Resiliency

- Things will break more frequently on exascale systems
- Can we/should we do better than 'turn it off and turn it back on again'?

Exascale Data

- During simulations?
- Support for FAIR principles through workflows?
 - Archiving, indexing, DOIs, ...

Southern California Earthquake Center

5/18/2023

Workflow Community

- Umbrella and standards groups?
 - ExaWorks
 - •eFlows4HPC
 - Common Workflow Language
- How to reach out to new users with existing tools?

Urgent Computing

- Use sensors to trigger simulations?
- Operational aftershock forecasting
- Simulation-informed ShakeMaps

Upcoming HPC Trends

- Composible computing?
- ML/AI?

5/18/2023

Southern California Earthquake Center

Reproducibility Crisis

- How do we improve on the 40% of earth/environmental scientists who can't reproduce their own results? (*Nature*)
- How do we get to meta-FAIR?

Software Sustainability

- Science codes?
- Workflow tools?
- Data management tools?

Final Thoughts

- We live in exciting computational times!
- Excellent opportunity to consider what's next
- Workflow tools can help us navigate exascale challenges
- NAS report: "Realizing the potential of ARWs could accelerate the pace of scientific discovery by orders of magnitude and thereby expand the research enterprise's contribution to society."

Southern California Earthquake Center

Information Sciences Institute

USC Advanced Research Computing Enabling scientific breakthroughs at scale