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Motivation

* Large-scale computational models need to be calibrated against observational data

* Curse of dimensionality complicates the use of the standard stochastic methods
like MCMC

* World’s most powerful supercomputers are GPU-accelerated, new scalable
algorithms are needed to fully utilize the hardware




Motivation (#2)

* We develop a massively parallel ice flow model
Fastice

* The goal of the project is to run the simulation of
the ice flow over Greenland at 10m resolution

* We were awarded with 80 mio core-hours on LUMI,
the fastest supercomputer in Europe (#3 in Top500)

* Uncertainty quantification is an important objective
in computational glaciology and one of the goals in
our project
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Project website: https://ptsolvers.github.io/GPU4GEQ/ ‘


https://ptsolvers.github.io/GPU4GEO/

Adjoint method and inverse modelling

* Inverse problem: given a model R(u) = 0, find parameters A minimizing
the objective function ] = [|lu — u,psll, dx

* Gradient-based approach: 4
n+l — n _,, 2
A A yd/ln

* Adjoint method:
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the adjoint problem



Julia language

* Julia is a “fresh approach to scientific computing”, which solves the “two-language

. V24

O o0 problem
'u I Ia Julia is a dynamically typed high-level language that runs just as fast as Fortran or C

Has first-class support of GPU programming (Nvidia and AMDGPU)

Includes capabilities for the differentiable programming on GPUs via Enzyme.jl

Has a growing and friendly community

julia> using Enzyme

julia> f(w,x) = sin(w*x)
f (generic function with 1 method)

julia> Vf(w,x) = Enzyme.autodiff(Reverse,f,Active,Const(w),Active(x))[1][2]
Vf (generic function with 1 method)

julia> @assert Vf(m,1.0) = m*cos(m)



Gradient-based optimization

Ice surface Loss function

* We invert for the climate : ' — 10'
conditions to match tshe shape and L eretons
volume of a glacier in a synthetic
model setup

 We use a PDE-based depth-
integrated forward model:

V- [D(H)VS] = Q(S)

* We solve both forward and adjoint
problems using a fixed-point
iterative “pseudo-transient”
method:
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Performance

* The forward and inverse algorithm 200 Memory throgghput 2 Time per |ter‘at|on
are memory-bound, we use the —e— forward 10 T e—torward
effective memory throughput for 250  |—O— adjoint —©— adjoint
benchmarking performance 200 |

* The performance of the
Enzyme-generated adjoint solve is
similar to that of the forward solve 100 |

* The adjoint problem is linear, and
usually takes only a fraction of
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Coupling physics and ML

Ice flow model
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* Differentiable programming allows combining Neural network, fo
physics-based approaches and data driven
models, such as neural networks “\‘:’,H\‘f’,H"' “
* Here, we train the neural network-based Q(S) = ¢:,~.

climate forcing model to reproduce the shape
and the volume of the glacier




Thank youl!



