Massively parallel inverse
modeling on GPUs using the

adjoint method

lvan Utkin'?, Ludovic Rass?

WAW, D-BAUG, ETH Ziirich, Ziirich, Switzerland
2WSL, Birmensdorf, Switzerland

Solid Earth and Geohazards in the Exascale Era

ETH:zurich WAIAW Q 24t of May, 2023, Barcelona, Spain

Motivation

* Large-scale computational models need to be calibrated against observational data

* Curse of dimensionality complicates the use of the standard stochastic methods
like MCMC

* World’s most powerful supercomputers are GPU-accelerated, new scalable
algorithms are needed to fully utilize the hardware

Motivation (#2)

* We develop a massively parallel ice flow model
Fastice

* The goal of the project is to run the simulation of
the ice flow over Greenland at 10m resolution

* We were awarded with 80 mio core-hours on LUMI,
the fastest supercomputer in Europe (#3 in Top500)

* Uncertainty quantification is an important objective
in computational glaciology and one of the goals in
our project

Speed (km/yr)

<0.001 0.1 1>3

400 km

[

Project website: https://ptsolvers.github.io/GPU4GEQ/ ‘

https://ptsolvers.github.io/GPU4GEO/

Adjoint method and inverse modelling

* Inverse problem: given a model R(u) = 0, find parameters A minimizing
the objective function] = [|lu — u,psll, dx

* Gradient-based approach: 4
n+l — n _,, 2
A A yd/ln

* Adjoint method:

SR

':‘?”' :,' ", ity
N “‘ ' I/
s @&s O'I[%’%””""t .,: L ‘310. oy //I/I
/} I i, ‘;;«9;""& /;;/Illill
‘.v /

d 9/ du) [R]" OR
dA odu di ou |ou oA
| J | J | J | J L J

1xN NxM I1xN NxN NxM
. _ 9] 4 _ _wTOR . L
Solve in 2 steps:] Y= P T ¥ Y Can use automatic differentiation to solve

the adjoint problem

Julia language

* Julia is a “fresh approach to scientific computing”, which solves the “two-language

. V24

O o0 problem
'u I Ia Julia is a dynamically typed high-level language that runs just as fast as Fortran or C

Has first-class support of GPU programming (Nvidia and AMDGPU)

Includes capabilities for the differentiable programming on GPUs via Enzyme.jl

Has a growing and friendly community

julia> using Enzyme

julia> f(w,x) = sin(w*x)
f (generic function with 1 method)

julia> Vf(w,x) = Enzyme.autodiff(Reverse,f,Active,Const(w),Active(x))[1][2]
Vf (generic function with 1 method)

julia> @assert Vf(m,1.0) = m*cos(m)

Gradient-based optimization

Ice surface Loss function

* We invert for the climate : ' — 10'
conditions to match tshe shape and L eretons
volume of a glacier in a synthetic
model setup

 We use a PDE-based depth-
integrated forward model:

V- [D(H)VS] = Q(S)

* We solve both forward and adjoint
problems using a fixed-point
iterative “pseudo-transient”
method:

= 10%¢

dS ' ' ' ' ' ' '
6 + V- [D(H)VS] — Q(S) 0 0.5 ‘1 1.5
T # iter

Performance

* The forward and inverse algorithm 200 Memory throgghput 2 Time per |ter‘at|on
are memory-bound, we use the —e— forward 10 T e—torward
effective memory throughput for 250 |—O— adjoint —©— adjoint
benchmarking performance 200 |

* The performance of the
Enzyme-generated adjoint solve is
similar to that of the forward solve 100 |

* The adjoint problem is linear, and
usually takes only a fraction of

Te]cf [GB/s]
2
time/it [s]
o

iterations required for the nonlinear 0
forward solve

Coupling physics and ML

Ice flow model

bed
ice (learned)
= = = jce (synthetic)

30

25

20

15

10

=50 =25 0 25 51

* Differentiable programming allows combining Neural network, fo
physics-based approaches and data driven
models, such as neural networks “\‘:’,H\‘f’,H"' “
* Here, we train the neural network-based Q(S) = ¢:,~.

climate forcing model to reproduce the shape
and the volume of the glacier

Thank youl!

