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Who is this guy?

• May 2017–present, Computational Scientist at Argonne National Laboratory, working on PETSc
development and applications using it

• January 2014–May 2017, HPC Earth System Models Architect at Intel

• Part of the Many Integrated Core (MIC) program developing Xeon Phi
• Hardware/software co-design in weather, climate, and Earth system models

• August 2004–January 2014, Staff scientist at Oak Ridge National Laboratory

• Started in NCCS/OLCF (supercomputing center), moved to Computer Science and Mathematics
Division, then Environmental Sciences Division

• Joint faculty appointment (departments of Earth and Planetary Sciences; Computer Science)
University of Tennessee, 2010—2014

• 2001–2004, DOE Computational Science Graduate Fellow, Dept. of Computer Science at William
and Mary (PhD 2004). Practicum in Earth and Environmental Sciences Division, Los Alamos
National Laboratory (initial development of subsurface flow and reactive transport code
PFLOTRAN)

• 1995–1999, Undergraduate studying geology, physics, computing at University of Tennessee.
Research in computational geomorphology model development, neural network processing of remote
sensing data

• Earlier: Lots of photos of me standing by roadcuts, etc., (“for scale”) with geology professor father



Outline

• Exascale: How did we get here? What are the trends and their implications?

• Brief overview of PETSc, the Portable, Extensible Toolkit for Scientific Computation and (mostly
historical) survey of enabling extreme inter-node scalability with it

• Enabling extreme intra-node scalability (focus during DOE Exascale Computing Project)

• Fundamental challenges posed by GPUs
• PETSc’s design for GPU computing

• Experiences with PETSc on GPUs; Practical challenges we encountered and our workarounds;
Advice for library and application developers

• Exemplar of best practices for achieving end-to-end GPU acceleration with PETSc (and libCEED):
Solid mechanics with Ratel

• Summary and philosophy / vision for the future



Perspective from Pre-Dawn of the Petascale Era: David Keyes, “Petaflop/s, Seriously”, 2007



Constants Matter!

• Prof. Keyes’ (quite valid) point was that the exponential growth of computing power promises to
enable novel and prominent uses of modeling and simulation.

• BUT, the methods we use depend not just on scaling of available compute, but on important
constants that have been changing as hardware evolves. E.g., relative cost of compute vs. memory
access, CPU vs. GPU latencies
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Constants Matter!

• Prof. Keyes’ (quite valid) point was that the exponential growth of computing power promises to
enable novel and prominent uses of modeling and simulation.

• BUT, the methods we use depend not just on scaling of available compute, but on important
constants that have been changing as hardware evolves. E.g., relative cost of compute vs. memory
access, CPU vs. GPU latencies

• Perhaps if peanut-butter production followed trajectories like computing in HPC centers:

• No one would make sandwiches: peanut butter costs $0.0125 per jar’s worth, but is only sold in
pallets of 55-gallon drums that ship from a distribution center hundreds of miles away (high
throughput, high latency)

• Boutique peanut farmers and processors are gone; there are only a few high-volume vendors that
strip-mine peanuts and each produce only one variety of peanut butter. (And be careful mixing

varieties from different vendors: interactions between chemical additives cause difficulties.)



What has driven HPC architecture trends as we approached the Exascale Era?

Moore’s Law (1965)

• Moore’s Law: Transistor density doubles roughly every two years

• For decades, single core performance roughly tracked Moore’s law growth, because smaller transistors
can switch faster.

• Moore’s law is dead (if you ask NVIDIA) or alive and well (if you ask Intel)

Dennard Scaling (1974)

• Dennard Scaling: Voltage and current are proportional to linear dimensions of a transistor; therefore
power is proportional to the area of the transistor.

• Ignores leakage current and threshold voltage; past 65 nm feature size, Dennard scaling breaks down
and power density increases, because these don’t scale with feature size.

Power Considerations

• The “power wall” has limited practical processor frequencies to around 4 GHz since 2006.

• Increased parallelism (nodes, cores, hardware threads, SIMD lanes, GPU warps, etc.) has been the
path forward.



Microprocessor Trend Data
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Current trends in HPC architectures

Emerging architectures are very complex...

• Lots of nodes, hardware cores, hardware threads (most visible in extremely powerful GPUs)

• Reliance on wide SIMD, wider SIMT

• Increasing reliance on fused-multiply-add (FMA), with multiple execution ports, proposed quad FMA
instructions

• Multiple memories to manage (multiple NUMA nodes, GPU vs. host, normal vs. high-bandwidth
RAM, byte-addressable NVRAM being introduced, ...)

• Growing depth of hierarchies: in memory subsystem, interconnect topology, I/O systems

...and hard to program (at least in a performant manner)

• Growth in peak FLOP rates have greatly outpaced available memory bandwidth.

• Vectorization may require fighting the compiler, or entirely re-thinking algorithm.

• Must balance vectorization with cache reuse.

• Host vs. offload adds complexity; large imbalance between memory bandwidth on device vs. between
host and device



Portable, Extensible Toolkit for Scientific 
Computation / Toolkit for Advanced Optimization

Scalable algebraic solvers for PDEs. Encapsulate 
parallelism in high-level objects. Active & supported 
user community. Full API from Fortran, C/C++, Python. 

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of 
diverse scientific applications.
clockwise from upper left: hydrology, 
cardiology, fusion, multiphase steel, 
relativistic matter, ice sheet modeling

§ Easy customization and 
composability of solvers at 
runtime
— Enables optimality via flexible 

combinations of physics, 
algorithmics, architectures 

— Try new algorithms by 
composing new/existing 
algorithms (multilevel, domain 
decomposition, splitting, etc.) 

§ Portability & performance
— Largest DOE machines, also 

clusters, laptops
— Thousands of users worldwide

Preconditioners

Krylov Subspace Solvers

Nonlinear Algebraic Solvers

Time Integrators

Computation & Communication 
Kernels 

Optimization

Domain-
Specific
Interfaces Structured Mesh

Unstructured Mesh
Quadtree / Octree

Networks

Vectors MatricesIndex Sets



PETSc - the Portable, Extensible Toolkit for Scientific computation



Computational Hydrology 
and Subsurface Science

Simulated uranium plume at Hanford, WA Simulation of supercritical CO2 in geologic 
carbon sequestration

Simulations of permafrost hydrology near Barrow, AK to assess climate impacts of high-latitude warming

Computational Geodynamics

Continental rift evolution simulated with pTatin3D (Wolf et al., 2022, https://doi.org/10.1029/2022JB024687)Subduction zone formation simulated with LaMEM (Riel et al. 2023, https://doi.org/10.1038/s41467-023-36419-x)

Some Geophysical Applications Enabled by PETSc



PETSc Design Philosophy
Optimal solvers must consider the interplay among physics, algorithms, and architectures.

Algorithmic composability

• Composable: Solvers should be easy to combine, by non-experts, to form a more powerful solver.

• Hierarchical: Outer solvers may iterate over all variables for a global problem, while inner solvers
handle smaller subsets of physics, smaller physical subdomains, or coarser meshes.

• Nested: Outer solvers call nested inner solvers

• Extensible: Easily customized or extended by users

Runtime configurability

• Performance models for the most interesting problems are generally not predictive enough to enable
a priori determination of best solver

• PETSc components should be combinable in flexible ways at runtime to enable experimentation

Vertical integration

• Holistic application tuning must recognize that economies of selected components are coupled

• Enable re-use of information between components: Data layout information, user-provided callbacks
(e.g., between time integrators and sensitivity analysis), previously computed operators, etc.



Scaling PETSc to Extreme-Scale Systems

Parallel scalability has been a key design goal of PETSc since its inception.

Inter-node scalability

• For much of PETSc’s history (first release in 1995), the primary challenge to achieving extreme-scale
performance was getting good inter-node (MPI) scaling.

• As node counts increased and new barriers to inter-node scalability were encountered, many features
have been introduced in response, to either

• Decrease or hide communication, at cost of increased local work
• Shift where collective communication occurs (trade expensive global communication for communi-

cation across smaller neighborhoods)

Intra-node scalability

• After steady increase, supercomputer node counts have plateaued and then slightly decreased
(Fugaku is the exception).

• New challenge is to leverage high levels of fine-grained, on-node parallelism.

• Remainder of talk will focus on specific challenges posed for scientific libraries by GPU-based super-
computer architectures, and approaches adopted in PETSc to address them.



Decreasing/Hiding Communication via Increased Local Work
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Figure: Bulk statistics for iteration times for standard and
pipelined versions of GMRES on ALCF Theta Cray XC40
machine. https://doi.org/10.1177/1094342020966835

At Left: Schematics of the main loop of the Flexi-
ble Conjugate Gradient (FCG; left) and the Modified
Pipelined Flexible Conjugate Gradient (PIPEFCG;
right) methods. Data dependencies in FCG preclude
overlapping reductions with the application of the
operator or the preconditioner. At the price of in-
creased local work and storage, PIPEFCG reductions
can overlap operator and preconditioner application.
https://doi.org/10.1137/15M1049130

https://doi.org/10.1177/1094342020966835
https://doi.org/10.1137/15M1049130


Above: Hierarchical Krylov methods trade global inner products for ones over a neighborhood; generalizing additive 
Schwarz methods, each block is solved by Krylov methods on smaller blocks. doi:10.1016/j.parco.2013.10.001

Right: Agglomeration in parallel multigrid. Rather than incur 
large communication cost on coarse grid, communicate at 
intermediate points in the hierarchy. As we coarsen, use 
smaller sets of processors (MPI ranks), which allows 
balancing communication and computation. Implemented in 
PCTELESCOPE in PETSc. 
https://doi.org/10.1145/2929908.2929913

Shifting Where Collective Communication Occurs



Scaling PETSc to Extreme-Scale Systems

Parallel scalability has been a key design goal of PETSc since its inception.

Inter-node scalability

• For much of PETSc’s history (first release in 1995), the primary challenge to achieving extreme-scale
performance was getting good inter-node (MPI) scaling.

• As node counts increased and new barriers to inter-node scalability were encountered, many features
have been introduced in response, to either

• Decrease or hide communication, at cost of increased local work
• Shift where collective communication occurs (trade expensive global communication for communi-

cation across smaller neighborhoods)

Intra-node scalability

• After steady increase, supercomputer node counts have plateaued and then slightly decreased
(Fugaku is the exception).

• New challenge is to leverage high levels of fine-grained, on-node parallelism.

• Remainder of talk will focus on specific challenges posed for scientific libraries by GPU-based super-
computer architectures, and approaches adopted in PETSc to address them.



Fundamental GPU Challenges (F1–F2)

Three fundamental challenges arise in providing libraries that obtain high throughput performance on
parallel GPU accelerated systems due to hardware and low-level software aspects of GPUs.
No programming model obviates or allows programmers to ignore them.

F1. Portability for application codes

• Many competing, incompatible GPU architectures and programming models

• Different vendors support different programming models and provide different mathematical libraries
with different APIs and even different synchronization models

F2. Algorithms for high-throughput systems

• In addition to application porting, high-throughput systems such as GPUs require developing and
implementing new solver algorithms—ones that exploit high levels of data-parallel concurrency with
low levels of memory bandwidth delivered in a data-parallel fashion.

• Generally involves algorithms with higher arithmetic intensity than most traditional simulations utilize.



Fundamental GPU Challenges (F3)

F3. Utilizing all GPU and CPU compute power

• Achieving high computational throughput requires keeping all GPU compute units as busy as possible

• Each core must have an uninterrupted stream of instructions and a high-bandwidth stream of data
within the constraints of the hardware and low-level software stack

• Difficulty arises from complex control and data flows; distributed memory further complicates picture
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Performance portability in PETSc

Back-end PETSc Vector and Matrix 
implementations

PETSc computation kernels
CPU:  Use compiler options and vendor libraries for

performance

GPU:  Chosen for either speed of development or

highest performance.  Use GPU vendor libraries

OpenCL: ViennaCL
OpenCLC Code

BLAS/LAPACK MKL
C++ data-parallel PM

Kokkos: Kokkos-kernels
SYCL: OneAPI

Cuda PM
CUDA: cuBLAS,  cuSparse
HIP:rocBLAS, rocSPARSE

GPU

Front-end PETSc vector and matrix arrays
are shared with user programming language/model

Application code
Using PETSc API

C, C++, Fortran
CPU Compiler Directives

OpenMP, OpenACC
C++ Lambda PM

Kokkos, SYCL, RAJA
Cuda PM

CUDA, HIP

GPU



Application

PETSc/TAO

Example: PETSc and Application Use CPU only
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Example: PETSc Using CUDA/cuBLAS/cuSPARSE
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Example: PETSc and Application Using CUDA



Application
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Example: PETSc and Application Using CUDA and Kokkos
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Example: PETSc and Application Using CUDA, Kokkos, and Kokkos-Kernels



Application

PETSc/TAO

Kokkos

ROCm

rocBLAS, 

rocSparse

Kokkos

Kernels

uses

optional

Example: PETSc and Application Using AMD GPUs via ROCm, Kokkos, and Kokkos-Kernels



Application

PETSc/TAO

Kokkos

SYCL
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Kokkos

Kernels

uses

optional

Example: PETSc and Application Using Intel GPUs via SYCL, Kokkos, and Kokkos-Kernels



How PETSc Uses GPUs

• Provides several new implementations of PETSc’s Vec (distributed vector) and Mat (distributed
matrix) classes which allow data storage and manipulation in device (GPU) memory

• Embue all Vec (and Mat) objects with the ability to track the state of a second “offloaded” copy of
the data, and synchronize these two copies of the data (only) when required (“lazy-mirror” model).

• Because higher-level PETSc objects rely on Vec and Mat operations, execution occurs on GPU when
appropriate delegated types for Vec and Mat are chosen.

Host and Device Data

struct _p_Vec {

...

void *data; // host buffer

void *spptr; // device buffer

PetscOffloadMask offloadmask; // which copies are valid

};

Possible Flag States

typedef enum {PETSC_OFFLOAD_UNALLOCATED ,

PETSC_OFFLOAD_GPU ,

PETSC_OFFLOAD_CPU ,

PETSC_OFFLOAD_BOTH} PetscOffloadMask;



Using GPU Back-Ends in PETSc

Transparently use GPUs for common matrix and vector operations, via runtime options.
Currently CUDA/cuSPARSE, HIP/hipSPARSE, Kokkos, and ViennaCL are supported.

CUDA/cuSPARSE usage:

• CUDA matrix and vector types:
-mat type aijcusparse -vec type cuda

• GPU-enabled preconditioners:

• GPU-based ILU: -pc type ilu -pc factor mat solver type cusparse

• Jacobi: -pc type jacobi

Because PETSc separates high-level control logic from optimized computational kernels, even very
complicated hierarchical/multi-level/domain-decomposed/physics-based solvers can run on different
architectures by simply choosing the appropriate back-end at runtime; re-coding is not needed.



The Common Pattern for PETSc Application Codes

PETSc application codes, regardless of whether they use time integrators, nonlinear solvers, or linear
solvers, follow a common pattern:

• Compute application-specific data structures,

• Provide a Function computation callback,

• Provide a Jacobian computation callback, and

• Call the PETSc solver, possibly in a loop.

This approach does not change with the use of GPUs.
In particular, the creation of solver, matrix, and vector objects and their manipulation do not change.

Points to consider when porting an application to GPUs:

• Some data structures reside in GPU memory, either

• constructed on the CPU and copied to the GPU or
• constructed directly on the GPU.

• Function will call GPU kernels.

• Jacobian will call GPU kernels.



Main Application Code for CPU or GPU

Consider excerpt of a typical PETSc main application program for solving a nonlinear set of equations
on a structured grid using Newton’s method. It creates a solver object SNES, a data management
object DM, a vector of degrees of freedom Vec, and a Mat to hold the Jacobian. Then, Function and
Jacobian evaluation callbacks are passed to the SNES object to solve the nonlinear equations.

SNESCreate(PETSC_COMM_WORLD ,&snes);

DMDACreate1d(PETSC_COMM_WORLD ,...,&ctx.da);

DMCreateGlobalVector(ctx.da ,&x);

VecDuplicate(x,&r);

5 DMCreateMatrix(ctx.da ,&J);

if (useKokkos) {

SNESSetFunction(snes ,r,KokkosFunction ,&ctx);

SNESSetJacobian(snes ,J,J,KokkosJacobian ,&ctx);

} else {

10 SNESSetFunction(snes ,r,Function ,&ctx);

SNESSetJacobian(snes ,J,J,Jacobian ,&ctx);

}

SNESSolve(snes ,NULL ,x);

Listing 1: Main application code for CPU or GPU



Traditional PETSc Function and Kokkos version

DMGetLocalVector(da ,&xl);

DMGlobalToLocal(da,x,INSERT_VALUES ,xl);

DMDAVecGetArrayRead(da,xl ,&X); // only read X[]

DMDAVecGetArrayWrite(da,r,&R); // only write R[]

5 DMDAVecGetArrayRead(da,f,&F); // only read F[]

DMDAGetCorners(da ,&xs,NULL ,NULL ,&xm ,...);

for (i=xs; i<xs+xm; ++i)

R[i] = d*(X[i-1] -2*X[i]+X[i+1])+X[i]*X[i]-F[i];

--------------------------------------------------------

10 DMGetLocalVector(da ,&xl);

DMGlobalToLocal(da,x,INSERT_VALUES ,xl);

DMDAVecGetKokkosOffsetView(da,xl ,&X); // no copy

DMDAVecGetKokkosOffsetView(da,r,&R,overwrite);

DMDAVecGetKokkosOffsetView(da,f,&F);

15 xs = R.begin (0); xm = R.end(0);

Kokkos :: parallel_for(

Kokkos :: RangePolicy <>(xs,xm),KOKKOS_LAMBDA

(int i) {

R(i) = d*(X(i-1) -2*X(i)+X(i+1))+X(i)*X(i)-F(i);});

Listing 2: Traditional PETSc Function (top) and Kokkos version (bottom). xl, x, r, f are PETSc
vectors. X, R, F at the top are double* or const double* like pointers but at the bottom are Kokkos
unmanaged OffsetViews.



Traditional PETSc Jacobian and Kokkos version

DMDAVecGetArrayRead(da,x,&X);

DMDAGetCorners(da ,&xs,NULL ,NULL ,&xm ,...);

for (i=xs; i<xs+xm; i++) {

j = {i - 1,i,i + 1}; A = {d, -2*d + 2*X[i],d};

5 MatSetValues(J,1,&i,3,j,A,INSERT_VALUES);

}

--------------------------------------------------------

DMDAVecGetKokkosOffsetView(da,x,&X);

MatKokkosGetDeviceMatWrite(J,& d_mat); // device handle that allows writing to matrix entries

10 xs = X.begin (0); xm = X.end(0);

Kokkos :: parallel_for(

Kokkos :: RangePolicy <>(xs,xm),KOKKOS_LAMBDA

(int i){

j = {i-1,i,i+1}; A = {d, -2*d + 2*X(i),d};

15 MatSetValuesDevice(d_mat ,1,&i,3,j,A,INSERT_VALUES);});

Listing 3: Traditional PETSc Jacobian (top) and Kokkos version (bottom)



Numerical Experiments: Platforms

Summit (DOE ORNL/OLCF): Current #4 on
TOP500; IBM Power System AC922, IBM
POWER9 22C 3.07GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR Infiniband

Frontier (DOE ORNL/OLCF): Current #1 on
TOP500; HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD Instinct
MI250X, Slingshot-11 (some results from Crusher
testbed system with identical hardware)

Perlmutter (DOE LBNL/NERSC): Current #7
on TOP500; HPE Cray EX235n, AMD EPYC
7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB,
Slingshot-10

(Some reported results also come from Lassen, an IBM Power System AC922 at LLNL that has the
same CPUs and GPUs as Summit, but only 4 GPUs per node instead of 6.)



Summit Results: PETSc GAMG Algebraic Multigrid

Solve time for a 3D Laplacian with second-order
elements. Larger grids are generated by uniform
refinement. Runs are configured with six resource
sets on each Summit node, each with one GPU and
4 MPI processes.

• MPI parallel scaling is good.

• Slower performance of KokkosKernels is due to
computing a transpose for matrix transpose mul-
tiply, which is not natively supported.

• Kokkos is faster when configured with
cuSPARSE kernels.



Crusher (Frontier Prototype) Results: PETSc GAMG Algebraic Multigrid



Challenge: Everything Seems Broken, All the Time

• We support four GPU back-ends (CUDA, HIP, Kokkos, ViennaCL) and may add more: there are a
lot of “moving parts” and it is easy for things to break.

• GPU support in MPI implementations has been particularly problematic:
“There’s an old adage that when the impossible happens, it’s probably a bug in your code, not a bug
in the compiler. [Here], it’s probably a bug in the vendor’s GPU-aware MPI that they’ve known
about for a year and haven’t deemed worth telling you about.” —Jed Brown

• Substantial investment (both money and time) in continuous integration (CI) infrastructure for
GPUs has been critical!

• Early in ECP, PETSc moved to Gitlab because it enabled much more robust CI. Investing in
improved CI is one of the most important things we have done during ECP.



Challenge: Measuring, Understanding, and Reasoning About Performance

• Test/measure things yourself: conventional wisdom is often wrong.

• Performance measurement can be challenging on GPU nodes:

• High GPU initialization cost can skew measurements (we support both eager and lazy
initialization; former facilitates performance measurement, latter allows execution of
CPU-configured binaries on non-GPU nodes).

• (GPU initialization cost is also a substantial drag on CI infrastructure.)
• Detailed logging of GPU performance introduces synchronization overhead; by default only

highest-level events are timed (add -log view gpu time for detailed profiling).

• Just because a vendor implementation exists does not mean you should use it: E.g., sparse triangular
solves on GPUs can be 20X slower than matrix vector multiplication (on CPUs cost is roughly equal).

• It is important to establish latency and bandwidth baselines so you can reason about performance.



VecAXPY() and VecCopy() Operations on Summit: CPU vs. GPU

Figure: Effect of vector size on AXPY performance and memory throughput (one MPI rank per GPU) on a
single node of the OLCF Summit system. As vector sizes become large, GPUs perform significantly better than
the 42 Power9 CPU cores available, but the CPU cores can be significantly faster for smaller vector sizes, due to
much smaller CPU latency. Figure on the right presents an alternative, work-time spectrum view of the data: in
this view, both asymptotic bandwidth and latency of the operations can be read directly from the figure.



Summit Results: SNES ex19 with Geometric Multigrid
Running SNES ex19 (velocity-vorticity formulation for nonlinear driven cavity) with 37.8 million total
degrees of freedom on single Summit node.

−∆U − ∂yΩ = 0

−∆V + ∂xΩ = 0

−∆Ω+∇ · ([UΩ,VΩ])−Gr ∂xT = 0

−∆T + Pr ∇ · ([UT ,VT ]) = 0

CPU only command line (V-cycles case):

jsrun -n 6 -a 7 -c 7 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg -da_refine 10 -snes_view

-pc_mg_levels 9 -mg_levels_ksp_type chebyshev -mg_levels_pc_type jacobi -log_view

(6 resource sets, each assigned 7 MPI ranks, 7 cores, 1 GPU: 42 MPI ranks/cores, 6 GPUs total)

CPU + GPU hybrid command line (V-cycles case):

jsrun -n 6 -a 4 -c 4 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg -dm_mat_type aijcusparse

-dm_vec_type cuda -da_refine 10 -snes_view -pc_mg_levels 9 -mg_levels_ksp_type chebyshev

-mg_levels_pc_type jacobi -log_view

(6 resource sets, each assigned 4 MPI ranks, 4 cores, 1 GPU:
24 MPI ranks/cores, 6 CPUs total)



SNES ex19 (Driven Cavity) on Summit with Multigrid, Times per Level

Examine time per multigrid level (use -pc mg log) for 24 ranks on CPU vs. GPU:
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SNES ex19 (Driven Cavity) on Summit with Multigrid, Times per Level

Examine time per multigrid level (use -pc mg log) for 24 ranks on CPU vs. GPU:
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SNES ex19 (Driven Cavity) on Summit with Multigrid, Times per Level

Examine time per multigrid level (use -pc mg log) for 24 ranks on CPU vs. GPU:
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Challenge: (Re-)Think About Data Structures Early and Often
Consider example of long-established data structures and interfaces PETSc uses for matrix assembly.

Traditional PETSc matrix assembly paradigm—loop over elements and call MatSetValues()
—is problematic on GPUs:

• Assembly into compressed sparse row (CSR) matrices in PETSc involves preallocating and adding
values to logically dense blocks using MatSetValues(), typically one block per finite element.

• Keeps memory utilization low, but is inefficient on GPUs and requires binary search to find insertion
location in CSR matrix.

• Enabling full MatSetValues() functionality on GPU requires locks or atomics when updating local
matrix stash.

As an alternative, we have introduced MatSetValuesCOO():

• Uses a coordinate (COO) format for matrix entry (assembled matrix still stored in CSR format).

• Two phases: Symbolic (preallocation) followed by setting numerical values

• Requires some additional memory, but handles off-process entries without locks or atomics and
delivers high performance on GPUs

• Supports identical API for both CPU and GPU

COO for assembly is the new paradigm that should be (generally) adopted in the GPU-computing era.



On-Device Matrix Assembly: Matrix Creation with COO API

static PetscErrorCode CreateMatrix(FEStruct *fe,Mat *A)

{

PetscInt *oor ,*ooc ,cnt = 0;

5 PetscFunctionBeginUser;

PetscCall(MatCreate(PETSC_COMM_WORLD , A));

PetscCall(MatSetSizes (*A, fe ->n, fe ->n, PETSC_DECIDE , PETSC_DECIDE));

PetscCall(MatSetFromOptions (*A));

10 /* Determine for each entry in each element stiffness matrix the global row and column */

/* The element is triangular with piecewise linear basis functions ,

so there are three degrees of freedom per element , one for each vertex */

PetscCall(PetscMalloc2 (3 * 3 * fe ->Ne , &oor , 3 * 3 * fe->Ne, &ooc));

for (PetscInt e=0; e<fe->Ne; e++) {

15 for (PetscInt vi=0; vi <3; vi++) {

for (PetscInt vj=0; vj <3; vj++) {

oor[cnt] = fe->vertices [3*e+vi];

ooc[cnt ++] = fe->vertices [3*e+vj];

}

20 }

}

PetscCall(MatSetPreallocationCOO (*A, 3 * 3 * fe->Ne , oor , ooc));

...

}

Listing 4: Matrix creation and preallocation for CPU or GPU case. See
$PETSC DIR/src/mat/tutorials/ex18.c

(And, for a more sophisticated example that illustrates how PETSc facilitates COO assembly for stencil
operators, see snes/tutorials/ex55.)



On-Device Matrix Assembly: MatSetValuesCOO() API

/* simulation of CPU based finite assembly process with COO */

PetscScalar *v,*s;

PetscCall(PetscMalloc1 (3 * 3 * fe ->Ne , &v));

for (PetscInt e=0; e<fe->Ne; e++) {

5 s = v + fe->coo[e]; /* point to location in COO of current element stiffness */

for (PetscInt vi=0; vi <3; vi++) {

for (PetscInt vj=0; vj <3; vj++) {

s[3*vi+vj] = vi+2*vj;

}

10 }

}

PetscCall(MatSetValuesCOO(A, v, ADD_VALUES));

Listing 5: Matrix assembly on CPU

// Simulation of GPU based finite assembly process with COO

Kokkos ::View <PetscScalar*,DefaultMemorySpace > v("v" ,3*3*fe ->Ne);

Kokkos :: parallel_for(

"AssembleElementMatrices", fe ->Ne, KOKKOS_LAMBDA(PetscInt i) {

5 PetscScalar *s = &v(3 * 3 * i);

for (PetscInt vi = 0; vi < 3; vi++) {

for (PetscInt vj = 0; vj < 3; vj++) s[vi * 3 + vj] = vi + 2 * vj;

}

});

10

PetscCall(MatSetValuesCOO(A, v.data(), ADD_VALUES));

Listing 6: Matrix assembly on GPU using Kokkos



OpenFOAM Miniapp

Figure: OpenFOAM miniapp timings on Summit. Upper-left panel: total time using native OpenFOAM or
PETSc GPU solvers. Upper-right panel: assembly times using MatSetValues or MatSetValuesCOO. Bottom
row: breakdown of PETSc solver timings for pressure (left) and momentum equations (right).



Challenge: Mismatch Between MPI and GPU Stream Programming Models

• Current MPI often prevents asynchronous GPU computation: GPU-aware MPI instructions pass
directly to memory controls and do not enter the stream queue; thus, the stream queue must be
empty for every MPI call, forcing synchronizations and preventing pipelined kernel launches.

• MPI must add GPU execution stream support, or we need to explore other models for
distributed-memory parallelism (PetscSF communication abstraction now supports NVSHMEM).
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B C A B CSync
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Figure: Pipelined kernel launches (L) vs. interrupted kernel launches (R). Suppose a kernel launch takes 10 µs
and A, B, C are three kernels taking 20, 5, 5 µs to run respectively. (L) shows a timeline with fully-pipelined
kernel launches. (R) shows a timeline with a device synchronization after kernel A. MPI communication forces
synchronizations like in (R); NVSHMEM does not and allows a timeline like in (L).



Support for GPU-Aware and GPU-Centric Communication in PetscSF

PetscSF is a communication layer in PETSc that has been incrementally replacing direct use of MPI.

• It represents communications as operations over “star forests”.

• A star is a simple tree consisting of a root vertex connected to zero or more leaves;
a star forest is a disjoint union of stars.

• PetscSF analyzes a specified communication graph and builds communication pattern using
persistent nonblocking send/receive (default), one-side operations, neighborhood collectives, or other
mechanisms.

PetscSF now supports GPU-aware MPI:

• GPU buffers can be passed directly to MPI; no need to stage GPU buffers through host memory

• Used by default since PETSc 3.13; disable with -use gpu aware mpi 0



Support for GPU-Aware and GPU-Centric Communication in PetscSF

PetscSF is not limited to using MPI as the underlying communication layer!

• We have recently added support for NVIDIA’s NVSHMEM partitioned global address space runtime.

• NVSHMEM allows pipelining of communication calls and kernel launches

• Current MPI does not: GPU-aware MPI instructions pass directly to memory controls and do not
enter the stream queue; thus, the stream queue must be empty for every MPI call.

• We are exploring Krylov solver implementations that can take full advantage of asynchronous GPU
execution.
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Figure: Pipelined kernel launches (L) vs. interrupted kernel launches (R). Suppose a kernel launch takes 10 µs
and A, B, C are three kernels taking 20, 5, 5 µs to run respectively. (L) shows a timeline with fully-pipelined
kernel launches. (R) shows a timeline with a device synchronization after kernel A. MPI communication forces
synchronizations like in (R); NVSHMEM does not and allows a timeline like in (L).



Asynchronous Conjugate Gradient Solver using PetscSF + NVSHMEM

Figure: Timeline (by Nsight System) of CG with PetscSF + CUDA-aware MPI (top) and CGAsync with PetscSF
+ NVSHMEM (bottom) on rank 2 of a test run with 6 MPI ranks (GPUs) on a Summit compute node. Each
ran ten iterations. Blue csr... bars are csrMV (i.e., SpMV) kernels in cuSPARSE, and the red c... bars are
cudaMemcpyAsync() copying data from device to host. As we can see at the top, with MPI, the kernel launches
(labeled with ’CUDA API’) were frequently stalled and spread with kernel executions, while with NVSHMEM at
the bottom, kernel launches were fully pipelined and during the 8th iteration, the host had launched all kernels
of the ten iterations and began waiting for the final result on GPU.



Challenge: Managing Asynchronicity and Many Concurrent GPU Streams Is Hard

New PETSc team member Jacob Faibussowitsch is re-architecting much of how PETSc manages GPU
devices and streams with PetscDeviceContext and Petsc::ManagedMemory.

PetscDeviceContext

• Backend agnostic wrapper over device and stream objects

• Ensures device libraries all play nice together

• Provides additional safety and ergonomics for vendor objects:

• Simple things like “stream A wait for stream B” are simple
• Improved compatibility, e.g. async allocators available for any CUDA/HIP version
• Automatically serializes dependent stream operations via auto-dependency tracking system



Petsc::ManagedMemory – A Sneak Peek of Work In Progress

https://gitlab.com/petsc/petsc/-/merge_requests/6178

using namespace Petsc;

// initialization not shown

Vec x, y, z;

ManagedScalar alpha , beta;

5 PetscDeviceContext dctx_a , dctx_b;

// Do VecAXPY () "on" dctx_a , may not complete before function returns

VecAXPYAsync(y, alpha , x, dctx_a);

// Perform this scalar calculation asynchronously on device. Support for

10 // arbitrary expressions

alpha = eval(dctx_a , beta + 1);

// NOTE dctx_b! Thanks to auto -dep system , this kernel knows to wait for

// scalar op to complete before starting

VecAXPBYAsync(y, alpha , beta , x, dctx_b);

15 // Executes concurrently with VecAXPBYAsync () (no dependency conflict)

VecScaleAsync(z, alpha , dctx_a);

https://gitlab.com/petsc/petsc/-/merge_requests/6178


Ratel: Efficient End-to-End GPU Simulation of Solid Mechanics

End-to-end GPU solution of non-
linear solid mechanics models using
Newton-Krylov with p-multigrid, via
PETSc + libCEED + BoomerAMG.
https://arxiv.org/abs/2204.
01722

Ratel challenges industrial state of practice and widely-held myths:

• Low order finite elements: Q1 (trilinear) hexahedra, P2 (quadratic) tetrahedra

• Assembled matrices, sparse direct and algebraic multigrid solvers

• Myth: High-order doesn’t help because real problems have singularities

• Myth: Matrix-free methods are only for high-order problems

Ratel demonstrates the importance of re-thinking data structures: by using matrix-free p-multigrid
and AMG coarse solvers, high-order methods become cheaper per DoF than low-order methods
(assembled or not), enabling faster and cheaper simulations at engineering tolerances.

Achieves efficient end-to-end utilization of GPUs while containing no architecture-specific code: all
such code exists within the libCEED back-ends and PETSc and hypre numerical kernels.

https://arxiv.org/abs/2204.01722
https://arxiv.org/abs/2204.01722


High-Order Methods Have Good Approximation Constants

Figure: Accuracy study (right) showing relative error in total strain energy Ψ versus DoFs for a bending
experiment (left) under both h-refinement (same shape) and p-refinement (same color) with low- and high-order
geometry. The Pareto front is toward the lower left and we observe that h-refinement always moves away from
optimality. The slope of h-refinement is the same for all meshes and solution orders. p-refinement is very
efficient so long as the geometry is at least quadratic, but causes errors to increase when p-refining on linear
geometry due to resolution of the non-physical singularities. Commercial software (e.g., Abaqus and ANSYS)
rules of thumb correspond to the gold circles (linear elements).



Clear Separation of Concerns in Ratel between PETSc and libCEED

• libCEED handles operator application, vector functions, interpolations, ... (all the analytical things)

• PETSc handles mesh management/refinement/geometry (topological things) and also
solvers/preconditioners (analysis again)

• PETSc represents both the mesh and the function space, allowing it to construct the “restriction” to
integration domains (cells). This hand-off to libCEED allows Ratel to automate complex things.

• The way that PETSc and libCEED are used allows users flexibility in choice of GPU abstraction:
GPU libraries are only linked transitively through PETSc and libCEED.



libCEED: Fast Algebra for High-Order Element-Based Discretizations

• Backend plugins with run-time selection

• debug/memcheck, optimized
• libxsmm, CUDA, HIP
• MAGMA to CUDA and HIP
• OCCA to OpenMP, OpenCL, CUDA, and HIP
• CPU back-ends implement element action B

using tensor-contractions with architecture-
specific vectorization

• GPU back-ends create fused kernel (compiled
at runtime) containing entire local action of
finite element operator

• Single source vanilla C for QFunctions

• Easy to debug, understand locally,
C++ optional

• Target for DSLs, automatic differentiation

• Python, Julia, Rust bindings

• 2-clause BSD

• Available via PETSc, MFEM, Nek5000



Why Matrix-Free?

Bandwidth is scarce compared to flops!

• Assembled matrices need at least 4 bytes transferred
per flop. Hardware does 10 flops/byte. Matrix-free
methods store and move less data, compute faster.

• High-order methods have better accuracy constants

(thus favoring p-refinement over h-refinement), but

are rarely used in practice, because assembly and lin-

ear algebra are much more expensive (no improve-

ment in asymptotics).



Operator Application Efficiency: Matrix-free faster even for Q1 elements

Figure: Parallel operator application efficiency (timings for matrix multiplication only) running on LLNL’s Lassen with
assembled aijcusparse and matrix-free shell operator representations. shell becomes more efficient as the order increases
while aijcusparse becomes less so. Both are latency-limited for smaller problem sizes (left side of the figure) and plateau as
memory is filled for larger sizes. aijcusparse cases run out of memory for smaller numbers of DoFs because high-order
methods yield many nonzeros per row.



Matrix-Free p-Multigrid
• In p-multigrid, discretization is coarsened by reduc-

ing polynomial order of basis functions (vs. mesh
coarsening by aggregating elements in h-multigrid)

• Natural fit for high-order elements on unstructured
meshes

• Pairs naturally with matrix-free data structures; can
be implemented efficiently with libCEED operators

• Approach here offers robustness of low-order AMG
w/ higher efficiency per DoF and lower wall-clock
time to meet engineering tolerances
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Figure: Flame graph for a typical setup and solve with Q2 elements. Dominant costs are preconditioner
application (left half; part of the linear solve) and setup (center-right third). Coarse solve (Level 0 and above)
takes about half the time of the fine (Level 1) and coarse setup (AMG) takes more time than fine p-MG setup,
despite fine having 8x more DoF.



Nonlinear Solve Efficiency: Q2 elements

Figure: Efficiency per Newton iteration versus time for Q2 finite elements using matrix-free Newton-Krylov with
p-MG preconditioning and Boomer-AMG coarse solve. In this and subsequent figures, problem sizes (in MDoF)
are annotated for the minimum and maximum sizes for each host and number of nodes combination. Perfect
weak scaling would have the 1-node and 8-node curves on top of each other, with strong scaling limits visible in
the minimum time at which acceptable efficiency can be achieved. Impact of latency is ever-present, with
memory capacity limiting right end of each curve.



Nonlinear Solve Efficiency: Q3 elements

Figure: Efficiency per Newton iteration versus time for Q3 finite elements using matrix-free Newton-Krylov with
p-MG preconditioning and Boomer-AMG coarse solve. Ideal weak scaling is evident on Perlmutter for Newton
step time above 1.8 s where the 1-node and 8-node curves coincide, while communication latency leads to
degradation at the smallest problem sizes (2 MDoF/GPU with time around 1 s). AMG requires a deeper V-cycle
for the larger problem size, but this latency impact is hidden at the 2 s solve time with Q3 elements (noticeable
in the Q2 case, where greater fraction of time is in AMG solve).



Linear Solve Efficiency: Q2 elements

Figure: Linear solve efficiency spectrum for Q2 finite elements using matrix-free Newton-Krylov with p-MG
preconditioning and BoomerAMG coarse solve. Times and efficiencies are per Newton iteration. The linear solve
(this and next Figure) is communication-intensive since each preconditioner application goes through a V-cycle
(with an increasing number of levels as the model gets larger).



Linear Solve Efficiency: Q3 elements

Figure: Linear solve efficiency spectrum for Q3 finite elements using matrix-free Newton-Krylov with p-MG
preconditioning and BoomerAMG coarse solve. Times and efficiencies are per Newton iteration.



Preconditioner Setup Efficiency: Q2 elements

Figure: Preconditioner setup efficiency spectrum for Q2 finite elements using matrix-free Newton-Krylov with
p-MG preconditioning and BoomerAMG coarse solve. Times and efficiencies are per Newton iteration. Setup
consists of algebraic multigrid analysis and Galerkin products, as well as a few Krylov iterations to calibrate the
smoothers.



Preconditioner Setup Efficiency: Q3 elements

Figure: Preconditioner setup efficiency spectrum for Q3 finite elements using matrix-free Newton-Krylov with
p-MG preconditioning and BoomerAMG coarse solve. Times and efficiencies are per Newton iteration. Relative
cost of Jacobian assembly and preconditioner setup is decreased for Q3 elements because the coarse problem is
a smaller fraction of the fine problem size.



General Observations about Preceding Efficiency Plots

• Tend to see greater volatility in the “strong scaling” regime at left edge of the Figures.

• Most configurations reach high efficiency weak scaling (solid and dotted lines very close) as the
problem size per GPU increases, leading to Newton solve times increasing to around 2 s and higher.

• Efficient weak scaling is usually realized at smaller (faster) solves than where performance plateaus,
indicating that single-node architectural latencies are a more insidious performance obstacle than
multi-node communication.

• Crusher (the Frontier testbed) exhibits a regime of efficient scaling, but efficiency degrades at the
largest problem sizes. This effect is not present on other machines; profiling points to network
degradation not identifiable in microbenchmarks (or smaller problem sizes) that will hopefully be
resolved in the MPI implementation or tuning.



2004 Gordon Bell Winner (Adams et al.): Implicit FEM for Solid Mechanics with > 0.5B DoFs



2004 Gordon Bell Winner: ASCI White vs. Single Crusher/Frontier Node

130 nodes of vs. 1
2
of

Metric Adams et al. 2004 Ratel Ratel

Discretization linear quadratic cubic
Machine ASCI White 130 nodes Crusher 1 node Crusher 1 node
Peak Bandwidth 1.56 TB/s 12 TB/s 12 TB/s
Degrees of Freedom 237 M 184 M 331 M
kDoF/GB 460 400 700
Load Step Strain 0.5% 12% 12%
kDoF/s per Load Step 600 6000 5500



Implicit Solid Mechanics: Old Performance Model

Iterative Solvers: Bandwidth

• SpMV arithmetic intensity of 1/6 flop/byte

• Preconditioners also mostly bandwidth

• Architectural latency a big problem on GPUs, especially for sparse triangular solves.
• Sparse matrix-matrix products for AMG setup

Direct Solvers: Bandwidth and Dense Compute

• Leaf work in sparse direct solves

• Dense factorization of supernodes

• Fundamentally nonscalable, granularity on GPUs is already too big to apply on subdomains

• Research on H-matrix approximations (e.g., in STRUMPACK)



Implicit Solid Mechanics: New Performance Model

Still Mostly Bandwidth

• Reduce storage needed at quadrature points

• Half the cost of a sparse matrix already for linear elements
• Big efficiency gains for high order

• Assembled coarse levels are much smaller.

Compute

• Kernel fusion is necessary

• Balance vectorization with cache/occupancy

• O(n), but benefits from BLIS-like (Van Zee and van de Geijn, 2015) abstractions

| BLIS | libCEED | |------|---------| | packing | batched element restriction |

| microkernel | basis action | | ? | user-provided qfunctions |



Summary

The foundation that PETSc has built (and continues to improve) over the years for scaling across
many nodes is ready for exascale-class node counts.

Intensive work on GPU support (for multiple programming models) over the last few years has added
the missing piece for upcoming exascale installations:

• Full support for AMD, Intel, and NVIDIA GPUs

• Support for efficient on-device matrix assembly

• Continuing to add helper routines to facilitate writing user callbacks running on GPUs

Ongoing efforts to explore and optimize performance on exascale and other GPU-based systems:

• Improving communication performance and leveraging asynchronicity (only briefly discussed)

• Many activities not discussed here: Adding batched solvers that aggregate many small solves onto
GPU; algorithmic improvements for better GPU utilization by quasi-Newton methods, etc.



Philosophy / Vision for the Future

Enable rapid experimentation

“Compilers are error reporting tools with a code generation side gig” —Esteban Küber
“PETSc is a library for diagnostics about differential algebraic systems that moonlights as a solver”

—Jed Brown

• It’s critical to be able to experiment rapidly (generating said diagnostics) to peel away the mysticism
in solver design for emerging architectures:

• Use late binding whenever possible: Composition of solvers, data structures, communication mech-
anisms, execution target (host vs. device), specified at execution time.

• Part of rapid experimenting is having easy access to cool algorithms/implementations others
have developed, hence emphasis on having interfaces to many other packages (hypre, Kokkos,
STRUMPACK, etc.)

Strive for configuration simplicity and strong encapsulation

• Make it possible for application developers to write code that achieves state of the art performance
without directly knowing about GPU compilers or libraries.

• Users can and should choose a GPU abstraction for the nonlinear operations in their problem domain.
That choice is independent of what PETSc uses.
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